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The recombination of nearest neighbors in a condensed matrix of free radicals 
was modeled by Jackson and Montroll as irreversible, sequential, random dimer 
filling of nearest-neighbor sites on an infinite, three-dimensional lattice. Here we 
analyze the master equations for random dimer filling recast as an infinite 
hierarchy of rate equations for subconfiguration probabilities using techniques 
involving truncation, formal density expansions (coupled with resummation), 
and spectral theory. A detailed analysis for the cubic lattice case produces, e.g., 
estimates for the fraction of isolated empty sites (i.e., free radicals) at 
saturation. We also consider the effect of a stochastically specified distribution 
of nonadsorptive sites (i.e., inert dilutents). 

KEY WORDS: Dimer filling; lattice; irreversible; saturation; hierarchy 
equations. 

1. INTRODUCTION 

It is possible to condense free radicals of, e.g,, O, H, or N, as a 
quasicrystalline matrix in which recombination and a subsequent release of 
energy can occur. (1) Jackson and Montroll, and others, (2) have modeled this 
process assuming nearest-neighbor (n.n.) free radicals (sequentially) 
recombine randomly and irreversibly leaving an isolated fraction of free 
radicals at the end of the process. The effect of a stochastically specified, 
time-independent distribution of inert dilutents on the latter quantity is also 
of interest. This model is clearly equivalent to the irreversible (sequential) 
random dimer filling of n.n. sites of a three-dimensional lattice. 

Random dimer filling of n.n. sites on lattices has received the most 
thorough attention of any (nontrivial) irreversible process on a lattice. The 
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saturation fraction of isolated empty sites, P~, is the prime quantity of 
interest here (see Fig. 1). The earliest analyses were for one-dimensional 
lattices in the context of pairing/cyclization reactions on polymer chains (3-7) 
beginning with Flory's (3) work in 1939 which showed that P~ = e -2 for an 
infinite one-dimensional lattice. The two-dimensional lattice case has been 
the subject of several studies in the context of two-point surface adsorption 
and reactionJ 8-13~ Combinatorial techniques have been used for finite one- 
dimensional (3'6'7~ and two-dimensional (9~ lattices and several Monte Carlo 
simulations have been performed for the two-dimensional case. (8~ The 
analytic approach implemented here is based on the hierarchial form of the 
master equations describing the time evolution of probabilities for various 
subconfigurations of filled and/or empty sites. These can be written down 
intuitively even for reversible nonrandom adsorption (1~ (where the 
adsorption/desorption rates depend on the state of a finite region around the 
site being filled). They are particularly simple for irreversible random dimer 
filling (see Refs. 4 and 5 for one-dimension and Refs. 10 and 13 for two 
dimensions). Solution of these hierarchial equations gives complete infor- 
mation about not only the time evolution of the process but also the none- 

(a) 

IN 
(b) 

(c) 

Fig. 1. Dimer filling of a (a) 1D linear, (b) 2D square, (c) 3D cubic lattice creating isolated 
empty sites (indicated by 0) which never fill. 
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quilibrium saturation state including, e.g., P~. (Equilibrium is not achieved 
since the dimer adsorption is irreversible and immobile). 

In this work, we consider random dimer filling on infinite lattices and 
implement various techniques to analyze the corresponding (infinite) 
hierarchy of rate equations. We first present a simple spectral analysis which 
exploits the special linear structure of these equations. Next a hierarchial 
truncation technique, approximate except in one dimension, is discussed. We 
adopt a scheme used by Vette et al. ~1~ in two dimensions which deals 
directly with conditional probabilities for a site to be empty given various 
other sites are empty. This technique is tailored to the special structure of the 
hierarchy, associated with irreversibility, which leads to a shielding property 
of suitable walls of empty sites (see Ref. 15 for a discussion in the context of 
general irreversible cooperative processes). A third alternative is to obtain 
formal density (coverage) expansions of solutions.(11'12) These are readily 
available even for complicated cooperative irreversible processes but 
typically suffer from convergence problems particularly for high, e.g., 
saturation, coverages. Consequently, here we also implement a resummation 
procedure which incorporates our knowledge of nonanalyticity (outside the 
physical range of coverage) explicit in the lowest-order truncation solution. 

In Section 2 we analyze the kinetics of irreversible random dimer filling 
of n.n. sites of an infinite uniform lattice (i.e., free radical recombination in 
the absence of inert dilutents). The nature of the approach to the final state is 
first elucidated through a simple spectral analysis. Next the truncation and 
density expansion resummation techniques described above are implemented. 
Most of the detailed results presented are for the case of a cubic lattice. 
Estimates for the final fraction of isolated empty sites (i.e., free radicals) 
demonstrate good agreement between the two techniques. The truncation and 
density expansion techniques are extended straightforwardly in Section 3 to 
analyze the effect of a stochastically specified distribution of nonadsorptive 
inactive sites (i.e., inert dilutents). 

2. DIMER FILLING OF INFINITE UNIFORM LATTICES 
(RECOMBINATION IN THE ABSENCE OF INERT DILUTENTS) 

2.1. General Theory 

For convenience we shall use the terminology of adsorption. Thus we 
consider the irreversible random dimer filling of nearest neighbor (n.n.) sites 
of an infinite, uniform lattice. One can intuitively write down an infinite 
hierarchy of rate equations for the probabilities Ptml that groups{m} of m 
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sites are empty (evaluated with respect to an appropriate ensemble of irrever- 
sible fillings). Specifically (cf. Refs. 10 and 13), 

1 d 
K- -"~ Plml ~ --rllmlP[ml -- J ~'lml nj'{m} P{ml +J (2.1) 

where ir is the (single) adsorption rate, n{m I is the number of n.n. pairs in 
{m}, and nj,{m } =- nj+tm} - n{m} is the number of sites in {m} adjacent to j. 
These terms correspond to destruction of {m} through dimer adsorption on 
sites completely within and partly overlapping {m}, respectively, In the 
second term, P[m}+j rather than P[ml appears, since site j must be empty for 
the dimer to land in the described fashion. Note that (2.1) contains an 
infinite closed subhierarchy for connected clusters of empty sites. 

The equations (2.1) do not assume any invariance of the Ptm}S and thus 
apply for any choice of initial conditions. Here, however, we assume that the 
P[ml are invariant under all space group operations on the lattice, as for 
example with an initially empty lattice, i.e., Plml = 1 at t =  0 for all {m}. 
Thus {m} in (2.1) will be interpreted, henceforth, as representing the infinite 
class of subconfigurations of sites equivalent to {m} after translation. For 
example, for a one-dimensional lattice, if Pm denotes the probability of any 
m-tuple of empty sites, then (2.1) includes the infinite subhierarchy (4'5'1~ 

K-1 d 
~T Pm = - ( m  - 1)P,, - 2Pm+ 1, m >/1 (2.2) 

where these terms correspond to destruction of an empty m-tuple by a dimer 
adsorbing completely within and partly overlapping the m-tuple, respectively. 

In this work we invoke spectral theoretic, hierarchial truncation (1~ 
and formal density expansion (with subsequent resummation) (11'12) 
techniques to analyze various equivalent forms of these equations. The 
former two are now described for a (general) lattice with coordination 
number e, and the latter two are implemented in the next section to treat the 
cubic lattice case. 

Exploiting the fact that (2.1) is linear and thus can be written in 
(infinite) matrix form, one can readily extract some understanding of the 
nature of the approach to the final stationary state. Let P(m) be the f in i te-  

dimensional vector constructed from P{ml for connected {m} (modulo tran- 
slations) and f i x e d  m. We may or may not choose to reduce the dimension of 
P(m) through other symmetries. Thus, e.g., P ( 1 ) -  P{1} ~ P0, the probability 
that any site is empty. Next we construct the infinite-dimensional vector P, 
say, from these, which satisfies the time evolution equation (2.1) in the form 
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Here (n(j))tjj,ij ~, = 51jl.[jl,n[j I and (n+(j))ljl,ij + u is an integral multiple of 
6u+ ll-ljl,k, where the Kronecker delta here means that {j} ~ {j + 1} and the 
only site of {j + 1} not in {j} is k. In a rigorous setting, K should be 
regarded as the unbounded generator of time evolution in the infinite- 
dimensional/°°-type Banach space naturally associated with the vectors P. 

The infinite-dimensional rate matrix K on the right-hand side of (2.3) 
generating time evolution is upper triangular and consequently its eigen- 
values are given by its diagonal components --vn~j~. Furthermore the eigen- 
vector corresponding to the nondegenerate eigenvalue - rn l l  I = 0  can be 
chosen to have unity in the first component and zeros elsewhere. This result 
should be anticipated since, in the final stationary state, clearly P[ml (in 
P ) = 0  for m ) 2 ,  but PIII-Po4=O. It is also useful to calculate the 
corresponding biorthogonal dual eigenvector (1, a(2) r, a(3)r,...), say. A 
simple recursive analysis shows that 

a(j)  r = - a ( j -  1) r .  n+( j  - 1 ) - n ( j )  -1 

=(--1) ' / - In+(1) .n(2) 1 .n+(2) .n(3) -1  . . . . .  n+( j  - 1 ) . n ( j )  -1 
(2.4) 

Now since n(2) = 1 and n(j) > 1, f o r j  > 2, and for an initially empty lattice 
Pit=0 = 1 (a vector with every component unity), it follows that 

0(2)  (1, a(2) r, a(3)r,...) • 1 + O(e-~t), as t--* 00 
V(t) = e+Kt" 1 = \ O 1 3 )  ] (2.5) 
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where, for each j,  all components of O(j) are zero. Consequently the 
saturation value, P~, of P0--PI~j (i.e., the final fraction of isolated empty 
sites) is given by 

P~ = (1, a(2) r, a(3)r,...) �9 1 (2.6) 

For a one-dimensional lattice, it follows immediately from (2.2) that 
n ( j ) = j -  1, n(j)  + = 2  for j />  1, and (2.4), (2.6) readily yield P~o=e -2, 
recovering the well-known result of Flory. t3) However, difficulty in obtaining 
accurate estimates of P~ from (2.6) increases dramatically as the lattice 
dimension increases. 

We can, of course, extend P to include disconnected configurations {m} 
as well. Since disconnected configurations, loosely speaking, couple only to 
those with the same or shorter separations, we can, by restricting our 
attention to a finite range of separations, still choose finite-dimensional 
vectors P(n). However there is no need for this. It is interesting to note that 
if P includes Ptml where all "m" points are separated (so him I = 0 ) ,  then the 
corresponding rate matrix K has a zero-eigenvalue eigenvector with all 
components zero except the {m}th. After constructing biorthogonal dual 
eigenvectors corresponding to all zero eigenvalue eigenvectors, the nonzero 
saturation values of such P{ml c a n  be calculated analogous to (2.5), (2.6). 
However, even in one dimension, such a construction is complicated. 

Finally, we remark that the upper triangular structure of the hierarchial 
rate equations for probabilities of empty subconfigurations is generic to all 
irreversible random and cooperative processes. The zero eigenvalue dual 
eigenvector construction can be extended, in principle, to determine 
saturation coverages, e.g., for random polyatomic filling or for monomer 
filling with some degree of blocking. However, a more detailed treatment is 
left till later work. 

We next consider (2.1) in a modified form more suited to implemen- 
tation of our truncation scheme and again restrict our attention to an 
initially empty lattice. Define the conditional probability QJ,lml = PJ+I~J/PImJ 
of j being empty given the sites in {m} are empty (the sites in {m} are 
referred to as conditioning sites). From (2.1), one immediately obtains an 
infinite closed hierarchy for these Qs, specifically (cf. Refs. 10 and 13), 

-1 d = X  l d/dtPj+lml x -1 d/dtPImJ 
x ~-~ln Qj,{mj PJ+lml PlmJ 

= -- (n{m]+ j -- n{m)) - -  ' ~  nk,[ml+jOk,{m}+ j 
k~{ml+j 

+ Z nk,lmlQk,Iml (2.7) 
k~lrnl 
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Note that (2.7) also contains an infinite closed subhierarchy for Qj,[m} with 
j +  {m} connected. Again subconfigurations labels can and will be inter- 
preted to refer to classes equivalent after translation. A shielding property of 
empty sites embodied, e.g., in (2.7), has been discussed elsewhere in a more 
general context. ~15) For random dimer filling, this property states that if a 
wall of empty sites of thickness 1 separates the lattice into disconnected 
regions, then the sites in any one region are not influenced by those in the 
other regions. 

In one dimension, it follows that a single site specified empty shields 
sites on one side from those on the other. Thus, for example, 

Qm =-- Pm+l/Pm ==- QO,~O...~. = Q~*...~O 
m ~Z 

(where 0 denotes a conditioning site specified empty) are equal to 
Q(-Pz /P~  =- Poo/Po), say, for all m >/1. This result follows immediately after 
simply recasting (2.2) in the form (2.7) to obtain ~~ 

d 
~c l ~ - ~ l n Q m = - l - 2 ( Q m + ~ - Q m  ), m/> 1 (2.8) 

Furthermore, (2.8) implies that, for an initially empty lattice, (4'5'1~ 

x l d  Q - e  ~t -~-ln Q = - I  so - (2.9) 

which can be used to exactly truncate the hierarchy (2.2) noting that 
P2 = QPl .  In two and three dimensions, the separating shielding wall of sites 
specified empty must either be closed or extend to infinity (some two- 
dimensional square lattice examples are displayed in Fig. 2). Proof of this 
shielding property again follows from observation of self-consistency with 
(2.7) after noting various cancellations analogous to those in (2.8). Some 
further discussion is given in the Appendix. Although this property does not 
allow exact truncation and solution of the hierarchy, it indicates the shielding 
propensity of empty sites and adds credence to the following truncation 
procedure which recovers exact results in one dimension. (Since filled sites 
do not have as great a shielding propensity, we avoid more standard 
Markovian-style truncations which, in any case, would not recover exact 
one-dimensional results.) 

We obtain approximate finite, closed, coupled sets of equations for 
various subsets of Qs by adopting the nth-shell truncation approximations of 
Vette et al. ~1~ Here conditioning sites in the Qk,m further than n lattice 
vectors from k are neglected. To illustrate this procedure, consider the first- 
shell approximation. If P0 = Q0 denotes the probability for any site to be 
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Fig. 2. Closed (A) and infinite (B) shielding walls, for random dimer filling on a 2D square 
lattice, which shield si tej  from the influence of k and visa versa (where 0 represents an empty 
conditioning site and the dots indicate that the wall of 0 sites extends to infinity). 

empty, Poo for an adjacent pair to be empty,.., and Qo~, = Poo/Po, ..., then for 
a lattice with coordination number c, (2.7) becomes 

d 
x -  ] ~ in Po = -cQoo 

d 
~ r  ~ QJ,~o+cOos 

n . r l ,  

(2 .  l O a )  

(2.10b) 

where the sum on the right-hand side of (2.10b) is over all empty sites j 
adjacent to the empty conditioning pair 0O. If there are no closed loops of 
length three (so excluding, e.g., a two-dimensional triangular lattice), then 
this sum consists of 2 ( c -  1) terms. Furthermore, here, in the first-shell trun- 
cation approximation Qj,o,-~ Q0, and so (2.10b) is replaced by 

1 d 
x -  ~Tln Q0~ = - 1  - ( c -  2)Q0~ (2.11) 

Integration of (2.10a) and (2.11) for c > 2 using the initial conditions P0 = 1, 
Qoo = 1, yields 

1 
Q 0 ~ -  c ~  [ ( e -  1)P~o c-2)/C- 1] (2.12) 
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Since clearly P00 and hence Q0o are zero at saturation, the first-shell estimate 
of the saturation value of P0 is P~ = [ 1 / ( c -  1)] C/~c-2). It has been noted 
elsewhere that (2.10a), (2.11), and (2.12) constitute the exact solution for 
random dimer filling on a Bethe lattice (i.e., a lattice with no closed loops) of 
coordination number C. (16) 

Higher-order truncation approximations, of course, retain more Qs (see 
the cubic lattice example below) and should be more accurate since neglected 
r sites are further from the 0 site and often will be obscured from the latter 
by several other 0 sites (which will have substantial shielding propensity). 
An estimate of accuracy can be obtained by comparison of results from 
different order approximations. We mention that the random dimer filling 
equations should be more amenable to truncation (especially at low orders) 
than those for other irreversible cooperative processes which typically 
require a shielding wall thickness greater than 1. ~15) 

2.2. The Cubic Lattice 

Here we consider only the case where the lattice is initially empty. 
Exploiting all lattice symmetries, (2.1) becomes 

l d  
K- ~-P0  = -6Poo 

_1 d 
K ~-P0o = -Poo - 2Poo0 - 8Po0 ~ 

K-1 d 
~-Pooo = -2Pooo -- 2Poooo - 8P o -- 4P o 

000 000 

: (2.13) 

where 0, 00, 000,... denotes a single, pair, triple .... of empty sites, respec- 
tively. From (2.13), one immediately obtains the following specific form of 
(2.7) for Qo =- Po, Qoo ~ Poo/Po, Qoo, =- Pooo/Poo,... : 

d 
x l ~ l n P 0 = _ 6 Q o o  

K- 1 d ~ - l n  Qo, = - 1  - 2Qo** - 

~c-1 d ~-~ In Q0oo = 

(2.14a) 

- 1 - 2 ( Q o o * * - Q 0 0 0 ) - 8 ( Q  0 - Q  o ) - 4 Q  0 (2.14c) 
0 0 0  04) 00e) 

8Q o + 6Qoo (2.14b) 
0 0  
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We have already discussed the first-shell truncation approximation 
wherein, e.g., Q0**, Q 0 -~ Q0~ in (2.14b), which then closes together with 

(2.14a). From (2.12) with c =  6, one obtains a first-shell estimate of the 
fraction of (isolated) empty sites at the end of the process of P~ = 1/5 , ~  ~_ 
0.08944 (corresponding to a saturation coverage 0s-~0.91056). Here 
Poo = PoQo~ can also be calculated without further approximation, unlike 
probabilities for large configurations, e.g., the probability for any connected 
cluster of m empty sites, PIm] ~ P0 Q0~m-1- 

In the second-shell approximation one neglects 4 sites, in the above Qs, 
further than two lattice vectors from the 0 site so, e.g., Qoooo~ Qooo, 
Q o-~Q 0. Thus (2.14a), (2.14b) are unaffected by this truncation but, 

here, e.g., (2.14c) is replaced by 

d (2.15) x -1 ~ - ln  Qo,~ = - 1  - 4 Q  o 
moo 

Table I. The Minimal Closed Set of 14Qs in the 2nd-Shell Truncation Approximation 
for Random Dimer Filling on a Cubic lattice (the Dots Separating Lattice Sites are 

Included to Clarify the 3D Configurations) 

. 2, 3. 4, 0 

Qo: Po Qo'"o Qo"'o,,,o Oo'"~ 

5, 0 6. 0 7 0 ' " 0  8, 0 
i i | l | i 

,, ,, 

, 

Qo' 

0 i0, 0 ii, 0 
| m m 
J i l 

d'o 

12, 0 13, 0 14. 0 0 ', ~ : , 

Qo":~".o 0o,,:~,,,o Oo,,:~:,,o 
i i l i i 

0 0 ' 0 ' 



Random Dimer Filling of Lattices 691 

Continuing in this fashion, one obtains a minimal closed set o f  equations for 
the 14 Qs shown in Table I. These allow the determination of  probabilities 
for several connected empty configurations, e.g., P o = PoQoo Qoo,Q o = 

000 r 1 6 2  

PoQo, Q o Q o , without further approximation (agreement of  the last two 
, e  * S 0  

expressions for truncation solutions is proved in Ref. 15). The probability 
P(0, 6) of  a single empty site surrounded by six filled sites can also be deter- 
mined after first rewriting this expression in terms of  Ps for connected empty 
configurations using conservation of  probability. Integration of  the second- 
shell equations yields the estimate P~)~_ 0.08454 (0 s ~-0.91546). Various 
probabilities and conditional probabilities are plotted as functions of 
coverage 0 = 1 - P 0  in Figs. 3 and 4, respectively. The latter clearly exhibits 

.8 

,6 

,4 

,2 

0 ,2 ,4 .6 ,8 1 
e 

Fig. 3. 2nd-shell truncation values, as a function of coverage 0, for probabilities of a pair 
P2, a linear (indistinguishable from a bent) triple P3, a square P4 or T-shaped P; quartet, and 
as cross shaped quintet P5 of empty sites. P6(P7) corresponds to the 3D configuration 11(14) 
of Table I after replacing O's with 0's. Q0, and P(0, 6) are defined in the text. 
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.Oq 

,02 

,00 

- .02 

-.Oq 

00 0 

Qx - Q00 

0 .2 .• OO 0 .6 .8 1 

Fig. 4. 2nd-shell truncation values for deviations in conditional probabilities from Qo~ 
plotted as a function of the natural parameter Q0o. 

the shielding propensi ty  of just  a single empty site. Note that  Q ~ - Q ~ and 
00~ O0 

Q o - Q o are too small  to show up graphical ly.  We also mention that  the 
000  00 

second-shell  approximat ion  exhibits "ar t i f ic ial  shielding" in that 
Q14 - Ql l  - 0 using the labeling of  Table I (a generic phenomenon for these 
types of  t runcat ion schemes(15)). 

Except  for Po,  sa tura t ion values for connected clusters of  (u ~ 2) empty 

sites are all zero. In contrast ,  those for Po -0 ,  P o, P o -  0, P o .... are 
0 0--0 

nonzero and the first, second, and fourth can be reasonably  est imated in the 
second-shell  approximat ion  (here --  indicates an unspecified site). To 

determine Po_o(P o), one must  include an equation for Qo-o(Q ~) which 
0-- 0 
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couples to Qooo(Q ,) and some of  the above 14 Qs. Since the equation for 
eo 

Qeo,(Q ,) is closed with the original set of  14, Po o( P o) can be determined 
~ 0  0 -  

f r o m  integrating an extended set of  16 equations. To determine P 0 , one 
0 - - 0  

must know Q ~ as well as P 0. Its equation together with those for Q 
0 - ~  O -  e O ~  

and Q+ close with the above 14 thus allowing integration. We obtain the 
o e  

saturation values Po 0 = 0 . 7 7 7  • 10 2, P o = 0 . 8 6 1  • 10 -2 ,  P o = 
0 -  0 - 0  

0.227 X 10 -3. In Fig. 5, corresponding correlations are plotted as functions 
of  0. 

Let us now sketch the formal density expansion method of  
solution. (11'12) Here we must start with the hierarchy for probabilities of  

.01 

,00 

-,01 Co-o 

-,02 

.02 

I | | I J I J I .~  

0 .2 '~ e .6 .8 1 

Fig. 5. 2rid shell truncation values for the correlations Coo = P o o -  (Po) 2 (the dotted line 
gives lst-shell), C o =  P o (Po) 2, Co o=Po o (Po) z, Cooo=Pooo-2PooPo- -Po  oPo+ 

0-- 0 

2 P ~ , C o = P o  . . . .  , C  o = P  o ' " "  
O0 O0 0--0 0 0 
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configurations with all specified sites filled a. This can be obtained from 
(2.13) using conservation of probability, i.e., P0 -= 1 - P ~ ,  Po0 ~- 
1 - 2P a + P~,,..., where Pa ( -  0, the coverage), P~a,... denote probabilities for 
a single, adjacent pair,.., of filled sites. This new hierarchy is, of course, 
equivalent to (2.13) and can be written down intuitively as follows: 

1 d 
x -  ~-Pa  = 6Poo = 6(1 - 2P a + Paa) (2.16a) 

d 
x - l  ~ -P . a  =Poo + 2Pooa + 8Po 

Oa 

= 1 + 8P a -- 9Paa - 2Pa-a -- 8Pa + 2Paa,~ + 8Pa (2.16b) 
--a aa 

X--  1 d ~Paa~=2Paoo+2Paaoo+8P o + 4 P  o = 2 P o + 8 P a ~ + " "  (2.16c) 
a a O  a O a  

(Here, one should think of a dimer landing on the empty pairs shown on the 
right-hand side to create the configuration on the left-hand side). We now 
divide (2.16a) into the rest of (2.16) to obtain (d /dO)P . . . {=[ (d /d t )P . . ] /  
[(d/dt)Po]} equations which, after formally expanding denominators, have 
the form 

d 1 {1 ~-~ P,~a = ~ -  + 10Pa -- lOPaa -- 2Pa_ a -- 8P a + 2Paaa + 8Pa 
a -  o a  

+ (8Pa --  9Paa)(2Pa --  Paa) + " "  } (2.17a) 

d 1 
~ Paaa  =--~ {2Pa + 8P~a + " "  } (2.17b) 

Next we postulate a Taylor expansion form Y~=o Bp On*+p, with respect 
to the coverage (density) 0, for the solutions Paa, Pa~ .... of (2.1 7), where Bp 
depend on the (filled) subconfiguration in question and n* naturally equals 
the minimum number of dimers required to cover that configuration.~12) The 
coefficients Bp in these expansions are simply determined recursively after 
substitution into the d/dO equations (2.17) and equating terms of equal 
power in 0. In particular, from (2.17a), it is immediate that 
P ~  = (1/6)0 + . . . .  More generally, this procedure yields 
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1 25 02 3@4 -[- P a ~ = ~ - O + ~ -  + 03 5 4 
2-iF0 +... 

5 03 17 02 ~ + " "  35 02 + + P = + 03 
P ~ - a =  3~  ~ " ' "  ~_~ 18 

5 02 40 03 p 5 02 39 03 
Paaa= 18- +-81- + ' " '  a a =  18 +--~-  + " "  

1 
= 02 + .. . ,  P~ . . . ' Pa  ,Pa.  36 aaa aa 

i = - - 0 2  + 
P ~  18 

a a  

: (2.18) 

One can directly estimate (albeit rather poorly), the saturanon coverage from 
the above expansion for Paa by simply determining the appropriate root of 
Poo(O) = 1 - 20 + Paa(O) = 0. However a more sophisticated approach is 
now presented. 

The first-shell approximation for Q0, obtained from (2.12) after setting 
c = 6 and P0 - 1 - 0, suggests that we seek an expansion for Qo~ in the form 

Q o o = ( 1 - a ) + o t ( 1 - O ) 2 / 3  +flO2 q-?O3 q-rS04 + . . .  (2.19) 

which displays explicitly nonanalyticity outside the physical range of 0. The 
coefficients a, fl .... are obtained by expanding Po0 = ( 1 -  0)Qoo(O) as a 
power series in 0 and matching coefficients with the expansion for 
1 - 2 0  + Paa(O) obtained from (2.18). This yields 

a = 5/4 recovering the first-shell approximation 

fl = 0, y = 1/81 ("almost" canceling), ~ = 19/1944,... (2.20) 

Values of P~ and 0 ~ associated with the partial sums of (2.19), (2.20) are 
given in Table II along with their values from the truncation techniques. 

Table II. Random Dimer Filling of a Cubic Lattice: Estimates of the Saturation Fraction 
of Isolated Empty Sites P~ (and Hence Coverage 0 s = 1 - P~)  from Resummed Density 

Expansion and Truncation Techniques (cf. P~-~ 0.138 in Ref. 2) 

ruth partial 1 & 2 
sum (first-shell) 3 4 Second-shell 

P~ 0.08944 0.08441 0.08070 0.08454 
(0 ~) (0.91056) (0.91559) (0.91930) (0.91546) 
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The agreement of a with the first-shell truncation value and the 
vanishing of fl can be understood as follows. We first emphasize that the nth 
coefficient in (2.19) is determined from the first, second,.., and nth coef- 
ficients in the density expansion of P ~ .  Second, we observe that using the 
corresponding expansion for P~a for random dimer filling on a Bethe lattice 
with coordination number 6, one obtains a = 5/4 and all remaining coef- 
ficients equal to zero (since the first-shell approximation is the exact Bethe 
lattice solutiont16)). Finally, we note that in determining the first two coef- 
ficients of Po~ in (2.18), we do not "see" that the lattice has closed loops 
since the small subconfigurations entering at this stage involve no closed 
loops and could equally well be associated with a Bethe lattice of coor- 
dination number e = 6 as with a cubic lattice. Consequently, these coef- 
ficients have the Bethe values. 

3. DIMER FILLING OF LATTICES WITH A STOCHASTICALLY 
SPECIFIED DISTRIBUTION OF INACTIVE SITES (RECOMBINATION 
IN THE PRESENCE OF INERT DILUTENTS) 

Consider now the random dimer filling of a lattice with a time- 
independent (stochastically specified) distribution of inactive sites on which a 
dimer cannot land. Thus we start with a suitable (time-independent) 
ensemble of inhomogeneous lattices including inactive sites and with each 
member of this associate an appropriate ensemble of irreversible fillings. All 
probabilities discussed below are implicitly evaluated with respect to this 
combined ensemble. 

The site-type distribution can be specified by a set of time-independent, 
probabilities fllmj that all sites in the set {m} are active. It is convenient to 
define the conditional probabilities 7j,lmJ =flj+{rnl/fl[ml for site j to be active 
given that sites in {m} are active. Typically 7j,ImJ will be independent of sites 
in {m} further than a certain distance from j,  and for a random distribution, 
trivially 7j,lml =flj=fl  for all j and {m}. These quantities together with the 
adsorption rate, r, constitute the input to the hierarchical rate equations for 
this process. Exactly this type of formulation appears in the theoretical 
treatment of the kinetics of reactions involving binding to copolymers (i.e., 
one-dimensional lattices) with (time-independent) stochastically specified 
site-type distributions. ~lv) 

Typically one assumes translation invariance of the site-type 
distribution. Then if P a - a ,  say, denotes the probability that a site is 
inactive (defective), P0 that a site is active and empty, and Pa that a 
(necessarily active) site is filled, then clearly Pa + Po + Pa = 1. It is natural 
to ask what effect the inactive sites have on the final fraction of active and 
empty sites P~. Clearly as a increases the fraction of active sites, P0 + P~ = 
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1 - a - fi decreases (to zero when a = 1). However, increasing a also means 
there are more sites adjacent to inactive sites which we expect are less likely 
to fill (there are fewer ways a dimer can land covering these). Consequently 
the net effect is unclear (except for a near 1) and is analyzed below. 

3.1. General Theory 

The probabilities, P{m}, for finding the sites in {m} empty and active are 
naturally decomposed, here, as Plm} =fl{mlf{m}' where, by definition, the 
quantities f~m} are (conditional) probabilities for finding sites in {m} empty 
given they are active. Clearly the Plm} (still) satisfy (2.1), but here it is more 
convenient to deal directly with the infinite closed hierarchy for the f{ml" 
These equations can be obtained by dividing (2.1) by filml, or written down 
intuitively, and have the form 

K- 1 d ~f[ml=--Fl[rn}f{m} - ~ ?'lj,{m}~tj,{mlf[ml+j 
jgS{m] 

(3.1) 

Note that Yj.lmlf~m}+i gives the probability that the sites {m}, given active, 
are empty and that side j is active and empty (as is required for dimer 
filling). Of course, when fi =film} = 1 (no inactive sites),f~m } =-P{m} and (3.1) 
automatically reduces to (2.1). For an alternative perspective, consider 
random dimer filling of an initially partially (monomer) filled infinite, 
uniform lattice. Let film} now describe the stochastically specified distribution 
of initially empty sites, i.e., Plml =film} at t = 0, where Plm}' here, gives the 
probability that {m} is empty. Clearly (2.1) applies (being independent of 
initial conditions), and their solution here also solves the dimer filling 
problem on a "corresponding" defective lattice. 

Equations (3.1) are extremely general not assuming any invariance of 
the defective site distribution (film}) or site occupancy distribution (f~m})" 
However, henceforth, we assume that film}, and hence f{m] (for an initially 
empty lattice), are invariant under all space group operations on the lattice 
(so again we can regard {m} as representing an infinite class of subcon- 
figuations of sites equivalent to {m} after translation). Furthermore, we 
assume that 7j,lm} depends only on the number of sites in {m} adjacent to j,  
so then one can write 7j,lm}=Tni.,,,. Thus, for example, for a one- 
dimensional lattice, if fm denotes the probability that an m-tuple of active 
sites is empty, then (3.1) includes the infinite subhierarchy 

l d  
K-  --dTfm = - ( m  - 1 ) f  m - 271fm+i, m >/1 (3.2) 

822/38/3-4-18 
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where ~)1 denotes the conditional probability that a site is active given that its 
left (right) n.n. is active [and having no knowledge of the type of its right 
(left) n.n.]. 

The spectral analysis of (3.1) as a linear system is analogous to that of 
(2.1) (the spectrum is identical). Hierarchical truncation and formal density 
expansion (with subsequent resummation) techniques again can be used to 
analyze various forms of these equations. Exact one-dimensional truncation 
results as well as the corresponding first-shell truncation approximation for a 
lattice of coordination number c are described below. Both truncation and 
density expansion methods are implemented in the next section to treat the 
cubic lattice case. 

For a one-dimensional lattice, defining qm=fm+l/ fm,  o n e  simply 
obtains from (3.2) the equations 

d 
K l ~ 7 1 n q m = - - l - - 2 ~ l ( q m + l - - q m ) ,  m>~ 1 (3.3) 

a t -  

which obviously have the solution qm = e-nt ,  m >~ 1, noting that qm = 1 at 
t = 0. Using this result to straightforwardly truncate (3.2) yields 

fo(t) -= f l ( t )  = exp [2~1(e- ~t _ 1)] (3.4) 

thus predicting a saturation value of f~ = e -2y~ (and P~ = flffo). The latter 
result is well known from theoretical statistical analyses of intrasequence 
cyclization on stochastic binary copolymers whose site-type distribution 
satisfies first-order Markov statistics. (4'v'~8) 

Returning to the case of a general lattice with coordination number 
c > 2, it is straightforward to write equations for the quantities qJ,lm~ = 
f~m}+Jfv ,  l (note that these qs are ratios of, but not themselves, conditional 
probabilities). The shielding condition of empty sites, as stated in Section 2, 
applies directly to these f or q quantities. The nth-shell truncation approx- 
imations can be implemented on the q equations in the same way as for the 
Q equations. For example, for a lattice with coordination number c and no 
closed loops of length three, the first-shell equations are 

__K_I d 
-~- In f0 = c71 q0~ 

1 d 
- - x -  -~lnq0~ = 1 + ( c - - 2 ) y l q o ~  

(3.5) 

where Yl is the conditional probability that a site is active given that one of 
its n.n. is active (and not having any information about the type of the 
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remaining c -  1 n.n.). For c > 2 and an initially empty lattice these have the 
solution 

1 
q0o - [{1 + ( c -  2)71}f(0 c 2)/c_ 1] (3.6) 

(c 2)~1 

so, consequently, the saturation values off0 and P0 are given by 

1 ] el(c- 2) 
, s s =  ~ 1 - c 7 1 + 0 ( 7 ~ )  as 71 ~ 0  P0=f i f0  and f0  1 + ( c - 2 ) 7 1  

(3.7) 

Note that these results are again exact for the corresponding Bethe lattice 
problem. The effect of the introduction of defects on P~ is evident in the first- 
shell identity 

d Pgl~=o 
da P~l~=o- c ~  (3.8) 

which follows from (3.7) assuming that 71(a) --- fi + O(a 2) as a ~ 0. Thus P~ 
initially increases as the inactive site concentration increase from zero. One 
can further show that, for a random distribution of defects (so 71 = f  l ) ,  this 
first-shell estimate of P~ attains its maximum when a = 1/2. 

3.2.  The Cubic Lattice 

In this section, we restrict our attention to a lattice with a random 

distribution of inactive sites of concentration a - 1 - f i .  In the first-shell 
truncation approximation, we obtain 

1 - a  d 1 
P~ - (5 - 4a) 3/2 and da P~l,~=0 25 V/5 ~- 0.0179 (3.9) 

The minimal closed set of equations in the second-shell approximation 
contains 14 qs for the same configurations as shown in Table I. Other qs 
may be added. In Fig. 5 we have plotted first- and second-shell estimates of 
P~ as a function of a. Numerical results for the second-shell also indicate 
that P~ has its maximum at a = 1/2. 

Density expansions of solutions are obtained by a procedure analogous 
to Section2. We start with the equations for probabilities, f of 
configurations of sites, given to be active, which are in either an unspecified 
state x or filled a. For example, exploiting various lattices symmetries, and 



700 Evans and Nord 

converting empty to unspecified/filled configurations using the relevant, more 
complicated form of conservation of probability yields 

l_af, K- dt (1 = 6flf~176 = 6fl(1 - 2fx~ +f~a) (3.10a) 

tr d 
-~ f,,a =foo + flfxoo + 4fifo 

xO 

+f l (5 - - f xax - fxx (1 -4 f  x - -4 f  (1+fx(1a+f ~) (3.10b) 
x a  X x  x a  

d K-1 
@/-, f~a =f00 + 2flfooa + 8fifo 

0 a  

=l-2fx.+La 
+ 2fl(f,,xa-- fx,~-- f~x(1+ f~(1a + 4f~ --4fx --4f~ + f~ ) 

x (1  (1(1 x (1  a c l  

: (3.10c) 

course fx(1 ~f~=PJfl=-O/f l  since knowledge that a site is active Of 
influences the probability that an adjacent (active) site is filled. Furthermore, 
from (3.10), we see that there is no simple relation between these two fs. 

To obtain density expansions, one again first divides (3.10a) into the 
rest of (3.10) to obtain d/df(1 equations and formally expand denominators. 
We postulate a Taylor expansion form for solutions where the lead power is 
the minimum number of dimers required to cover the filled sites in the 
corresponding configuration. Coefficients in these expansions are determined 
recursively after substitution into the d/df, equations and matching terms of 
equal power in f(1. Note that determination of, say, the mth coefficient off(1(1 
involves many more configurations than the corresponding calculation for 
P(1a in Section 2. However, straightforward calculation yields 

fo(1__ L+Tgf +g_4g_ 87__ U f3+... 

fx(1= + f(1+ 1 - - ~ -  f 2 +  1296\  -fl- f 3 + . . .  

fxx(1 = + f~ + 1-i-~ fl f 2 +  ... 

f(1= +SV fl 6 6? 
X X  
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f ~ x =  T + f ~ + ~  fl 3 f ]  + "'" 

f x=  + J'~ + - ~  fl 2 f ]  + "'" 
x a  

+ 1 (_~0__ 11 6-~) 
f x ~ ,  fx = f~ + i - ~  fl + 6 f ~ 

a c l  

+ ... 

: (3.11) 

One can readily check agreement of (3.11) with (2.13) for f l=  1. 
Resummation is again motivated by the first-shell approximation, 

specifically (3.6) after setting c =  6 and f0 = 1 - f a ,  which suggests looking 
for %o in the form 

qo~ = (1 --p) +p(1 - - f a )  2/3 ~- ~f2 + r/f] + ... (3.12) 

Here p, ~ .... are obtained by expanding f0 0 ~ (1 - fa)qoo as a power series in 
fa and matching coefficients with the expansion for 1 -  2fx a + faa obtained 
from (3.11). This yields 

1+4/~ 
P -  4fl 

- -  recovering the first-shell approximation 

= O, r /= ~ 3 - ("almost" canceling),... (3.13) 

The agreement of p with the first-shell value and the vanishing of ~ can be 
understood from Bethe lattice arguments identical to those given in 
Section 2. The value o f f ~  obtained from (3.12) by neglecting higher coef- 
ficients and setting q0, = 0 satisfies 

1 I 2 ] 1 +4fl 1 -~--i--(3fl-- 1)(1 _f~)3 (3.14) 

The corresponding P~ = flf~o is plotted in Fig. 6. 

4.  D I S C U S S I O N  

The techniques used here appear to have produced a reliable description 
of the kinetics of random dimer filling of the three-dimensional cubic lattice, 
at least for the probabilities of smaller configurations. In particular, fairly 
consistent values were obtained for the final fraction of empty sites, certainly 



702 Evans and Nord 

,10 

,08 

,O6 

,04 

,02 

\ 2ND SHELL 

IST SHELL 

ED EXPANSION 

0 ,2 .4 .6 .8 ] 
11 

Fig. 6. Estimates of the fraction of active and empty sites at saturation for random dimer 
filling on a cubic lattice with a random distribution of non-adsorptive sites of concentration a. 

improving on the previous estimates. Determination of, e.g., large separation 
spatial correlations is more difficult requiring an extended set of  equations 
and a more refined truncation procedure. To our knowledge these 
calculations constitute the first explicit treatment of  a nontrivial irreversible 
process on a three-dimensional lattice exploiting the structure of  the 
corresponding exact hierarchial rate equations. Finally we note that the 
techniques used here are quite general although, typically, application to 
other processes will be more complex. 
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APPENDIX 

The shielding property of separating walls of empty sites of thickness 1 
is incorporated in a rather subtle way in the hierarchy. Rigorous proof must 
be based on the observation of self-consistency with the infinite Q hierarchy 
and requires development of an appropriately general (and complicated) 
notation for subconfigurations. Thus here, instead, we illustrate with some 
examples, the structural features of these equations which leads to shielding. 
We consider only the two-dimensional square lattice (for notational 
simplicity) concentrating on the identities 

Q o~  ~ Q  ~o  and Q o - Q  o 

0 ~ 0  0 0 r  0 

From (2.7) one obtains 

_ _ K _ I  d ~- ln  Q ooo 
00o  r 

0 0 0  

= 1 +  ~_~ Q ~ - ~" Q ~o~ 
e x t j  J, e o0  0 e x t j  j , r  

+3(Q o~  - Q  ~o~ ) +3(Q ~,~ - Q  oo~ ) 
~ 0 0 0  ~ 0~0 0 0 0 0  O0 O0 O~ 

000 r  000 OOO 

d 
_K-I  In Q oo~ = 1  + ~'  Q ooo 

d 
- O~ 0 e x t j  J,~o r 

r  000 

- Z Q o o o  
e x t j  J,o r 

+3(Q o~o - Q  ~o~ ) +2(Q ~o~ - Q  ~o0 ) 
000  0 r 0 00  0 ~ ~ 0 0 

+3(Q ,~oo - Q  oo~ ) (A1) 
r  O0 0 oo 

0 0 0  0oCa 

where ~extj represents a sum over empty sites j on the exterior of and 
adjacent to the closed shielding wall. The shielding condition, and in 
particular the first identity, is compatible with (A1) noting pairwise 
cancellation of the terms in parentheses. The grouping of terms here 
(according to whether the 0 site is inside or outside the shielding wall), when 
implemented throughout the Q hierarchy, demonstrates clearly self- 
consistency with shielding. 
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cons is ten t  wi th  the phys ica l ly  obv ious  cons t ra in t  (for any d imer  fil l ing 

p rocess )  tha t  Q ~ _= 1. M o r e  genera l ly ,  for any closed,  ( empty)  shielding 
moo 

wall,  one  can  a lways  ob ta in  a c losed  set o f  equa t ions  for va r ious  Qs with  the 

cond i t ioned  0 site and cond i t ion ing  r sites all inside this wall.  
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